Intel provides open-source AI reference kits

  • July 26, 2023
  • Steve Rogerson

Intel is offering a set of 34 open-source AI reference kits to the community following a yearlong collaboration with Accenture so developers and data scientists can deploy artificial intelligence (AI) faster and more easily.

Each kit includes model code, training data, instructions for the machine-learning pipeline, libraries and OneAPI components to optimise AI and make it accessible to organisations in multiarchitecture on-premises, cloud and edge environments.

“Intel AI reference kits give millions of developers and data scientists an easy, performant and cost-effective way to build and scale their AI applications in health and life sciences, financial services, manufacturing, retail, and many other domains,” said Intel vice president Wei Li. “Intel is committed to enabling an AI everywhere future through not just our portfolio of AI-accelerated processors and systems but also our contributions to an open AI software ecosystem. The reference kits are built using components of Intel’s AI software portfolio and on the foundation of the open, standards-based, OneAPI multiarchitecture programming model.”

Built on the OneAPI open, standards-based, heterogeneous programming model and components of Intel’s end-to-end AI software portfolio, such as the AI Analytics and the Distribution of OpenVino toolkits, the reference kits help AI developers streamline the process of introducing AI into their applications, enhancing existing intelligent options and accelerating deployment. The result is proven performance improvements with a shorter, more productive workflow versus a traditional model development workflow.

The preconfigured kits simplify AI development across industries including consumer products, energy and utilities, financial services, health and life sciences, manufacturing, retail, and telecommunications.

Using the AI reference kit designed to set up interactions with an enterprise conversational AI chatbot, users can experience inferencing in batch mode up to 45% faster with OneAPI optimisations.

The AI reference kit is designed to automate visual quality control inspections for life sciences demonstrated training up to 20% faster and inferencing 55% faster for visual defect detection with OneAPI optimisations.

So developers can predict utility asset health and deliver higher service reliability, there is an AI reference kit that provides up to a 25% increase in prediction accuracy.

AI reference kits can reduce development time from weeks to days, helping data scientists and developers train models faster and at a lower cost by overcoming the limitations of proprietary environments. AI tools and optimisations powered by OneAPI can increase portability for open accelerated computing applications.

“Collaborating with Intel to build AI reference kits for the open-source community has led to more productive AI workloads for our clients,” said John Giubileo, managing director of Accenture. “The kits, built on OneAPI, are designed to offer developers a portable and efficient solution for AI projects, which reduces project complexity and the time to deployment across industries.”

Through community feedback, along with contributions, select kits will continue to be updated. Specific kits include visual quality inspection, enterprise conversational AI chatbot setup, predictive asset health analytics, medical imaging diagnostics, document automation, and AI-structured data generation.